Structure Reports

Online
ISSN 1600-5368

Matthias Weil

Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria

Correspondence e-mail:
mweil@mail.zserv.tuwien.ac.at

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Mn}-\mathrm{O})=0.002 \AA$
R factor $=0.014$
$w R$ factor $=0.035$
Data-to-parameter ratio $=16.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
$\mathrm{Mn}_{3} \mathrm{TeO}_{6}$

Single crystals of trimanganese(II) hexaoxotellurate(VI), $\mathrm{Mn}_{3} \mathrm{TeO}_{6}$, were grown by chemical transport reactions. Its structure is isotypic with $\mathrm{Mg}_{3} \mathrm{TeO}_{6}$ and can be derived from close packing of strongly distorted hexagonal oxygen layers parallel to (001), with Mn and two distinct Te atoms in the octahedral interstices. The TeO_{6} octahedra are very regular, with $\overline{3}$ symmetry, whereas the MnO_{6} octahedra are considerably distorted.

Comment

Many orthotellurates(VI) of the formula type $\left(M, M^{\prime}\right)_{3} \mathrm{TeO}_{6}$, where M and M^{\prime} are divalent metals, are structurally well characterized. All these structures comprise isolated TeO_{6} octahedra and can be divided into six different structure types: $\mathrm{Mg}_{3} \mathrm{TeO}_{6}$ in the space group $R \overline{3}, \mathrm{Ni}_{3} \mathrm{TeO}_{6}(R 3)$ as a derivative of corundum, $\mathrm{Cu}_{3} \mathrm{TeO}_{6}(I a \overline{3})$ with a bixbyite-type structure, $\mathrm{Co}_{3} \mathrm{TeO}_{6}(C 2 / c)$ with a $\beta-\mathrm{Li}_{3} \mathrm{VF}_{6}$-type structure, $\mathrm{Ca}_{3} \mathrm{TeO}_{6}$ $\left(P 2_{1} / n\right)$ with a cryolite-type structure, and the unique structure of $\mathrm{Hg}_{3} \mathrm{TeO}_{6}(I a \overline{3})$. Lattice parameters, space groups, and average $\mathrm{Te}-\mathrm{O}$ distances of these and related compounds are given in Table 2. The title compound, $\mathrm{Mn}_{3} \mathrm{TeO}_{6}$, adopts the $\mathrm{Mg}_{3} \mathrm{TeO}_{6}$ structure type and its crystal structure is reported here.

The atomic arrangement of $\mathrm{Mn}_{3} \mathrm{TeO}_{6}$ can be derived from close packing of strongly distorted hexagonal oxygen layers parallel to (001), with Mn and two distinct Te atoms in the octahedral interstices (Fig. 1). Both TeO_{6} octahedra are isolated and share edges with six MnO_{6} octahedra. Each MnO_{6} octahedron shares four edges with adjacent MnO_{6} octahedra, one edge with a Te_{6} and another edge with the

Figure 1
The crystal structure of $\mathrm{Mn}_{3} \mathrm{TeO}_{6}$ in a perspective view along [$00 \overline{1}$]. Displacement ellipsoids are drawn at the 97% probability level.
$\mathrm{Te} 2 \mathrm{O}_{6}$ octahedron. Each of the two crystallographically independent O atoms is coordinated by one Te and three Mn atoms in a distorted tetrahedral manner. Both TeO_{6} octahedra exhibit $\overline{3}$ symmetry and are fairly regular, with an average $\mathrm{Te}-\mathrm{O}$ distance of $1.923 \AA$, which is in good agreement with the average $\mathrm{Te}-\mathrm{O}$ distances of other $\left(M, M^{\prime}\right)_{3} \mathrm{TeO}_{6}$ compounds (Table 2) and other tellurates(VI) (Levason, 1997). The MnO_{6} octahedron is considerably distorted, with distances ranging from 2.1055 (14) to 2.3841 (13) \AA (Table 1).

Experimental

A mixture of MnO and TeO_{3} in the stoichiometric ratio 3:1 was thoroughly ground, pressed into a pellet and placed in a silica ampoule which was evacuated, sealed, and heated within 3 h to 1103 K and kept at this temperature for 3 d . X-ray powder diffraction of the light-brown microcrystalline material revealed a single phase product. 200 mg of this material was mixed with $50 \mathrm{mg} \mathrm{PtCl}_{2}$ and loaded in an evacuated and sealed silica ampoule which was heated in a temperature gradient $1103 \rightarrow 1023 \mathrm{~K}$. At this temperature, PtCl_{2} decomposes with release of Cl_{2} which then serves as the transport agent. After 5 d , a few amber coloured crystals of the title compound with a plate-like habit and an edge-length up to 0.8 mm had formed in the colder part of the ampoule.

Crystal data

$\mathrm{Mn}_{3} \mathrm{TeO}_{6}$
$M_{r}=388.42$
Trigonal, $R \overline{3}$
$a=8.8673(10) \AA$
$c=10.6729(12) \AA$
$V=726.77(14) \AA^{3}$
$Z=6$

Data collection

Bruker SMART APEX CCD

 diffractometer
ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.375, T_{\text {max }}=0.773$

Refinement

```
Refinement on }\mp@subsup{F}{}{2
R[\mp@subsup{F}{}{2}>2\sigma(\mp@subsup{F}{}{2})]=0.014
wR(F}\mp@subsup{F}{}{2})=0.03
S=1.18
558 reflections
33 parameters
```

$$
\begin{aligned}
& D_{x}=5.325 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=13.55 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, amber } \\
& 0.09 \times 0.06 \times 0.02 \mathrm{~mm}
\end{aligned}
$$

> 3003 measured reflections 558 independent reflections
> 541 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.026$
> $\theta_{\max }=32.0^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0163 P)^{2}\right. \\
& +0.5015 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.59 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\min }=-1.06 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0116 \text { (3) }
\end{aligned}
$$

Table 2
Structural data of $\left(M, M^{\prime}\right)^{2+}{ }_{3} \mathrm{TeO}_{6}$ compounds $\left(\AA{ }^{\circ},{ }^{\circ}\right)$, and average $\mathrm{Te}-\mathrm{O}$ distances (\AA).

M, M^{2+}	space group	a	b	c	β	$(\mathrm{Te}-\mathrm{O})$
Mg^{a}	$R \overline{3}$	$8.615(3)$		$10.315(3)$		
Mn^{b}	$R \overline{3}$	$8.8673(10)$		$10.6729(12)$	1.913	
$\mathrm{Mn}^{2}, \mathrm{Cu}^{c}$	$R \overline{3}$	$8.826(1)$		$10.687(2)$	1.923	
Ni^{d}	$R 3$	$5.1087(8)$		$13.767(2)$	1.921	
$\mathrm{Cu}, \mathrm{Zn}^{e}$	$I a \overline{3}$	$9.537(1)$			1.940	
$\mathrm{Cu}, \mathrm{Co}^{f}$	$I a \overline{3}$	$9.5702(5)$			1.933	
${\mathrm{Cu}, \mathrm{Ni}^{g}}$	$I a \overline{3}$	$9.5464(6)$		1.932		
Cu^{h}	$I a \overline{3}$	$9.5565(5)$		1.934		
Co^{i}	$C 2 / c$	$14.8167(18)$	$8.8509(11)$	$10.3631(14)$	$94.90(1)$	1.921
Zn^{j}	$C 2 / c$	$14.8898(8)$	$8.8341(5)$	$10.3457(5)$	$92.990(1)$	1.922
$\mathrm{Cu}^{j} \mathrm{Zn}^{k}$	$C 2 / c$	$14.834(2)$	$8.801(1)$	$10.375(2)$	$93.27(2)$	1.918
Ca^{l}	$P 2_{1} / n$	$5.5782(8)$	$5.7998(9)$	$8.017(1)$	$90.217(5)$	1.924
Cd^{l}	$P 2_{1} / n$	$5.4986(3)$	$5.6383(3)$	$8.0191(5)$	$90.00(5)$	1.925
Hg^{m}	$I a \overline{3}$	$13.3808(6)$				1.942

Notes: (a) Schulz \& Bayer, 1971; (b) this work; (c) metal ratio: $\mathrm{Mn}_{2.4}, \mathrm{Cu}_{0.6}$; Wulff et al., 1998; (d) Becker \& Berger, 2006; (e) metal ratio: $\mathrm{Cu}_{1.5}, \mathrm{Zn}_{1.5}$; Wulff \& Müller-Buschbaum, 1998; (f) metal ratio: $\mathrm{Cu}_{1.5}, \mathrm{Co}_{1.5}$; Wulff \& Müller-Buschbaum, 1998; (g) metal ratio: $\mathrm{Cu}_{2} \mathrm{Ni}_{1}$; Wedel et al., 2001: (h) Falck et al., 1978; (i) Becker et al., 2006; (j) Weil, 2006; (k) metal ratio: $\mathrm{Cu}_{1.667}, \mathrm{Zn}_{1.333}$; Wulff \& Müller-Buschbaum, 1998; (l) Burckhardt et al., 1982: (m) Weil, 2003.

The atomic coordinates of $\mathrm{Mg}_{3} \mathrm{TeO}_{6}$ (Schulz \& Bayer, 1971) were taken as starting parameters for the refinement. The structural data were then standardized using the program STRUCTURE TIDY (Gelato \& Parthé, 1987). The deepest hole in the final Fourier map is 0.61 £ from Te1.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; method used to solve structure: coordinates taken from an isotypic compound; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2004); software used to prepare material for publication: SHELXL97.

Financial support by 'Hochschuljubiläumsstiftung der Stadt Wien' (project H-969/2004) is gratefully acknowledged.

References

Becker, R. \& Berger, H. (2006). Acta Cryst. E62, i222-i223.
Becker, R., Johnsson, M. \& Berger, H. (2006). Acta Cryst. C62, i67-i69.
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Burckhardt, H.-G., Platte, C. \& Trömel, M. (1982). Acta Cryst. B38, 2450-2452.
Dowty, E. (2004). ATOMS for Windows. Version 6.1. Shape Software, Kingsport, Tennessee, USA.
Falck, L., Lindqvist, O. \& Moret, J. (1978). Acta Cryst. B34, 896-897.
Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
Levason, W. (1997). Coord. Chem. Rev. 161, 33-79.
Schulz, H. \& Bayer, G. (1971). Acta Cryst. B27, 815-821.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Wedel, B., Kimio, I. \& Sugiyama, K. (2001). Z. Kristallogr. NCS, 216, 323-324.
Weil, M. (2003). Z. Anorg. Allg. Chem. 629, 653-657.
Weil, M. (2006). Acta Cryst. E62, i246-i247.
Wulff, L. \& Müller-Buschbaum, H. (1998). Z. Naturforsch. Teil B, 53, 53-57.
Wulff, L., Wedel, B. \& Müller-Buschbaum, H. (1998). Z. Naturforsch. Teil B, 53, 49-52.

[^0]: © 2006 International Union of Crystallography All rights reserved

