## inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## **Matthias Weil**

Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria

Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

#### **Key indicators**

Single-crystal X-ray study T = 293 K Mean  $\sigma$ (Mn–O) = 0.002 Å R factor = 0.014 wR factor = 0.035 Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Mn<sub>3</sub>TeO<sub>6</sub>

Single crystals of trimanganese(II) hexaoxotellurate(VI),  $Mn_3TeO_6$ , were grown by chemical transport reactions. Its structure is isotypic with  $Mg_3TeO_6$  and can be derived from close packing of strongly distorted hexagonal oxygen layers parallel to (001), with Mn and two distinct Te atoms in the octahedral interstices. The TeO<sub>6</sub> octahedra are very regular, with  $\overline{3}$  symmetry, whereas the MnO<sub>6</sub> octahedra are considerably distorted.

## Comment

Many orthotellurates(VI) of the formula type  $(M,M')_3$ TeO<sub>6</sub>, where M and M' are divalent metals, are structurally well characterized. All these structures comprise isolated TeO<sub>6</sub> octahedra and can be divided into six different structure types: Mg<sub>3</sub>TeO<sub>6</sub> in the space group  $R\overline{3}$ , Ni<sub>3</sub>TeO<sub>6</sub> (R3) as a derivative of corundum, Cu<sub>3</sub>TeO<sub>6</sub> ( $Ia\overline{3}$ ) with a bixbyite-type structure, Co<sub>3</sub>TeO<sub>6</sub> (C2/c) with a  $\beta$ -Li<sub>3</sub>VF<sub>6</sub>-type structure, Ca<sub>3</sub>TeO<sub>6</sub> ( $P2_1/n$ ) with a cryolite-type structure, and the unique structure of Hg<sub>3</sub>TeO<sub>6</sub> ( $Ia\overline{3}$ ). Lattice parameters, space groups, and average Te–O distances of these and related compounds are given in Table 2. The title compound, Mn<sub>3</sub>TeO<sub>6</sub>, adopts the Mg<sub>3</sub>TeO<sub>6</sub> structure type and its crystal structure is reported here.

The atomic arrangement of  $Mn_3TeO_6$  can be derived from close packing of strongly distorted hexagonal oxygen layers parallel to (001), with Mn and two distinct Te atoms in the octahedral interstices (Fig. 1). Both  $TeO_6$  octahedra are isolated and share edges with six  $MnO_6$  octahedra. Each  $MnO_6$  octahedron shares four edges with adjacent  $MnO_6$ octahedra, one edge with a Te1O<sub>6</sub> and another edge with the



© 2006 International Union of Crystallography All rights reserved Received 30 October 2006 Accepted 6 November 2006

Figure 1 The crystal s

The crystal structure of  $Mn_3TeO_6$  in a perspective view along  $[00\overline{1}]$ . Displacement ellipsoids are drawn at the 97% probability level.

Te2O<sub>6</sub> octahedron. Each of the two crystallographically independent O atoms is coordinated by one Te and three Mn atoms in a distorted tetrahedral manner. Both TeO<sub>6</sub> octahedra exhibit  $\overline{3}$  symmetry and are fairly regular, with an average Te-O distance of 1.923 Å, which is in good agreement with the average Te-O distances of other  $(M,M')_3$ TeO<sub>6</sub> compounds (Table 2) and other tellurates(VI) (Levason, 1997). The MnO<sub>6</sub> octahedron is considerably distorted, with distances ranging from 2.1055 (14) to 2.3841 (13) Å (Table 1).

## **Experimental**

A mixture of MnO and TeO<sub>3</sub> in the stoichiometric ratio 3:1 was thoroughly ground, pressed into a pellet and placed in a silica ampoule which was evacuated, sealed, and heated within 3 h to 1103 K and kept at this temperature for 3 d. X-ray powder diffraction of the light-brown microcrystalline material revealed a single phase product. 200 mg of this material was mixed with 50 mg PtCl<sub>2</sub> and loaded in an evacuated and sealed silica ampoule which was heated in a temperature gradient  $1103 \rightarrow 1023$  K. At this temperature, PtCl<sub>2</sub> decomposes with release of Cl<sub>2</sub> which then serves as the transport agent. After 5 d, a few amber coloured crystals of the title compound with a plate-like habit and an edge-length up to 0.8 mm had formed in the colder part of the ampoule.

#### Crystal data

| Mn <sub>3</sub> TeO <sub>6</sub>             | $D_x = 5.325 \text{ Mg m}^{-3}$           |
|----------------------------------------------|-------------------------------------------|
| $M_r = 388.42$                               | Mo $K\alpha$ radiation                    |
| Trigonal, R3                                 | $\mu = 13.55 \text{ mm}^{-1}$             |
| a = 8.8673 (10)  Å                           | T = 293 (2) K                             |
| c = 10.6729(12)  Å                           | Plate, amber                              |
| V = 726.77 (14) Å <sup>3</sup>               | $0.09 \times 0.06 \times 0.02 \text{ mm}$ |
| Z = 6                                        |                                           |
|                                              |                                           |
| Data collection                              |                                           |
| Bruker SMART APEX CCD                        | 3003 measured reflections                 |
| diffractometer                               | 558 independent reflections               |
| $\omega$ scans                               | 541 reflections with $I > 2\sigma(I)$     |
| Absorption correction: multi-scan            | $R_{\rm int} = 0.026$                     |
| (SADABS; Sheldrick, 2002)                    | $\theta_{\rm max} = 32.0^{\circ}$         |
| $T_{\rm min} = 0.375, \ T_{\rm max} = 0.773$ |                                           |

### Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_0^2) + (0.0163P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.014$ | + 0.5015P]                                                 |
| $wR(F^2) = 0.035$               | where $P = (F_0^2 + 2F_c^2)/3$                             |
| S = 1.18                        | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 558 reflections                 | $\Delta \rho_{\rm max} = 0.59 \text{ e} \text{ \AA}^{-3}$  |
| 33 parameters                   | $\Delta \rho_{\rm min} = -1.06 \text{ e } \text{\AA}^{-3}$ |
|                                 | Extinction correction: SHELXL97                            |

### Table 1

Selected bond lengths (Å).

| Mn-O1                |     | 2.1055 (14) | Mn-O2               |     | 2.2313 (13) |
|----------------------|-----|-------------|---------------------|-----|-------------|
| Mn-O2 <sup>i</sup>   |     | 2.1275 (13) | Mn-O1 <sup>iv</sup> |     | 2.3841 (13) |
| Mn-O1 <sup>ii</sup>  |     | 2.2009 (13) | Te1-O1              |     | 1.9247 (13) |
| Mn-O2 <sup>iii</sup> |     | 2.2311 (12) | Te2-O2              |     | 1.9214 (12) |
|                      | (1) | 1 1         | 1                   | 1 2 | 2           |

Extinction coefficient: 0.0116 (3)

Symmetry codes: (i)  $y - \frac{1}{3}, -x + y + \frac{1}{3}, -z + \frac{1}{3}$ ; (ii)  $-x + \frac{1}{3}, -y + \frac{2}{3}, -z + \frac{2}{3}$ ; (iii) -y, x - y, z; (iv)  $-y + \frac{1}{3}, x - y + \frac{2}{3}, z - \frac{1}{3}$ .

#### Table 2

Structural data of  $(M, M')^{2+}{}_{3}$ TeO<sub>6</sub> compounds (Å, °), and average Te–O distances (Å).

| <i>M</i> , <i>M</i> <sup>,2+</sup> | space            | a            | b           | с            | β          | (Te-O) |
|------------------------------------|------------------|--------------|-------------|--------------|------------|--------|
|                                    | group            |              |             |              |            |        |
| $Mg^{a}$                           | $R\overline{3}$  | 8.615 (3)    |             | 10.315 (3)   |            | 1.913  |
| $Mn^b$                             | $R\overline{3}$  | 8.8673 (10)  |             | 10.6729 (12) |            | 1.923  |
| Mn,Cu <sup>c</sup>                 | $R\overline{3}$  | 8.826 (1)    |             | 10.687 (2)   |            | 1.921  |
| $Ni^d$                             | R3               | 5.1087 (8)   |             | 13.767 (2)   |            | 1.940  |
| Cu,Zn <sup>e</sup>                 | $Ia\overline{3}$ | 9.537 (1)    |             |              |            | 1.933  |
| Cu,Co <sup>f</sup>                 | Ia <del>3</del>  | 9.5702 (5)   |             |              |            | 1.932  |
| Cu,Ni <sup>g</sup>                 | Ia3              | 9.5464 (6)   |             |              |            | 1.934  |
| $Cu^h$                             | $Ia\overline{3}$ | 9.5565 (5)   |             |              |            | 1.921  |
| Co <sup>i</sup>                    | C2/c             | 14.8167 (18) | 8.8509 (11) | 10.3631 (14) | 94.90(1)   | 1.932  |
| $Zn^{j}$                           | C2/c             | 14.8898 (8)  | 8.8341 (5)  | 10.3457 (5)  | 92.990(1)  | 1.922  |
| Cu,Zn <sup>k</sup>                 | C2/c             | 14.834 (2)   | 8.801(1)    | 10.375 (2)   | 93.27 (2)  | 1.918  |
| $Ca^{l}$                           | $P2_1/n$         | 5.5782 (8)   | 5.7998 (9)  | 8.017 (1)    | 90.217 (5) | 1.924  |
| $Cd^{l}$                           | $P2_1/n$         | 5.4986 (3)   | 5.6383 (3)  | 8.0191 (5)   | 90.00 (5)  | 1.925  |
| $Hg^m$                             | Ia3              | 13.3808 (6)  |             |              |            | 1.942  |

Notes: (a) Schulz & Bayer, 1971; (b) this work; (c) metal ratio:  $Mn_{2.4}$ ,  $Cu_{0.6}$ ; Wulff et al., 1998; (d) Becker & Berger, 2006; (e) metal ratio:  $Cu_{1.5}$ ,  $Zn_{1.5}$ ; Wulff & Müller-Buschbaum, 1998; (f) metal ratio:  $Cu_{1.5}$ ,  $Co_{1.5}$ ; Wulff & Müller-Buschbaum, 1998; (g) metal ratio:  $Cu_2Ni_1$ ; Wedel et al., 2001: (h) Falck et al., 1978; (i) Becker et al., 2006; (j) Weil, 2006; (k) metal ratio:  $Cu_{1.667}$ ,  $Zn_{1.333}$ ; Wulff & Müller-Buschbaum, 1998; (l) Burckhardt et al., 1982: (m) Weil, 2003.

The atomic coordinates of  $Mg_3TeO_6$  (Schulz & Bayer, 1971) were taken as starting parameters for the refinement. The structural data were then standardized using the program *STRUCTURE TIDY* (Gelato & Parthé, 1987). The deepest hole in the final Fourier map is 0.61 Å from Te1.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; method used to solve structure: coordinates taken from an isotypic compound; program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ATOMS* (Dowty, 2004); software used to prepare material for publication: *SHELXL97*.

Financial support by 'Hochschuljubiläumsstiftung der Stadt Wien' (project H-969/2004) is gratefully acknowledged.

### References

- Becker, R. & Berger, H. (2006). Acta Cryst. E62, i222-i223.
- Becker, R., Johnsson, M. & Berger, H. (2006). Acta Cryst. C62, i67-i69.
- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burckhardt, H.-G., Platte, C. & Trömel, M. (1982). Acta Cryst. B38, 2450–2452. Dowty, F. (2004) ATOMS for Windows Version 61. Share Software
- Dowty, E. (2004). *ATOMS for Windows*. Version 6.1. Shape Software, Kingsport, Tennessee, USA.
- Falck, L., Lindqvist, O. & Moret, J. (1978). Acta Cryst. B34, 896-897.
- Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
- Levason, W. (1997). Coord. Chem. Rev. 161, 33-79.
- Schulz, H. & Bayer, G. (1971). Acta Cryst. B27, 815-821.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Wedel, B., Kimio, I. & Sugiyama, K. (2001). Z. Kristallogr. NCS, **216**, 323–324. Weil, M. (2003). Z. Anorg. Allg. Chem. **629**, 653–657.

- Weil, M. (2005). Z. Anorg. Ang. Chem. 029, Weil, M. (2006). Acta Cryst. E62, i246–i247.
- Wulf, L. & Müller-Buschbaum, H. (1998). Z. Naturforsch. Teil B, **53**, 53–57.
- Wulff, L., Wedel, B. & Müller-Buschbaum, H. (1998). Z. Naturforsch. Teil B, 53, 49–52.